Intel® Virtualization Technology for Directed I/O (VT-d) ‡ Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.
Intel® Virtualization Technology (VT-x) ‡ Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.
Intel® 64 ‡ Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.
Intel® Turbo Boost Technology ‡ Intel® Turbo Boost Technology dynamically increases the processor's frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t.
Intel® Hyper-Threading Technology ‡ Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.
Intel vPro® Platform Eligibility ‡ The Intel vPro® platform is a set of hardware and technologies used to build business computing endpoints with premium performance, built-in security, modern manageability and platform stability.
Intel® VT-x with Extended Page Tables (EPT) ‡ Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.
Enhanced Intel SpeedStep® Technology Enhanced Intel SpeedStep® Technology is an advanced means of enabling high performance while meeting the power-conservation needs of mobile systems. Conventional Intel SpeedStep® Technology switches both voltage and frequency in tandem between high and low levels in response to processor load. Enhanced Intel SpeedStep® Technology builds upon that architecture using design strategies such as Separation between Voltage and Frequency Changes, and Clock Partitioning and Recovery.
Intel® Speed Shift Technology Intel® Speed Shift Technology uses hardware-controlled P-states to deliver dramatically quicker responsiveness with single-threaded, transient (short duration) workloads, such as web browsing, by allowing the processor to more quickly select its best operating frequency and voltage for optimal performance and power efficiency.
Intel® Deep Learning Boost (Intel® DL Boost) A new set of embedded processor technologies designed to accelerate AI deep learning use cases. It extends Intel AVX-512 with a new Vector Neural Network Instruction (VNNI) that significantly increases deep learning inference performance over previous generations.
Instruction Set Extensions Instruction Set Extensions are additional instructions which can increase performance when the same operations are performed on multiple data objects. These can include SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Extensions).
Intel® Turbo Boost Max Technology 3.0 ‡ Intel® Turbo Boost Max Technology 3.0 identifies the best performing core(s) on a processor and provides increased performance on those cores through increasing frequency as needed by taking advantage of power and thermal headroom.
# of AVX-512 FMA Units Intel® Advanced Vector Extensions 512 (AVX-512), new instruction set extensions, delivering ultra-wide (512-bit) vector operations capabilities, with up to 2 FMAs (Fused Multiply Add instructions), to accelerate performance for your most demanding computational tasks.
Intel® Resource Director Technology (Intel® RDT) Intel® RDT brings new levels of visibility and control over how shared resources such as last-level cache (LLC) and memory bandwidth are used by applications, virtual machines (VMs) and containers.
Intel® Speed Select Technology - Performance Profile A capability to configure the processor to run at three distinct operating points.
Intel® Speed Select Technology - Base Frequency Enables users to increase guaranteed base frequency on certain cores (high priority cores) in exchange for lower base frequency on remaining cores (low priority cores). Improves overall performance by boosting frequency on critical cores.
Intel® Volume Management Device (VMD) Intel® Volume Management Device (VMD) provides a common, robust method of hot plug and LED management for NVMe-based solid state drives.
Intel® Transactional Synchronization Extensions Intel® Transactional Synchronization Extensions (Intel® TSX) are a set of instructions that add hardware transactional memory support to improve performance of multi-threaded software.
Products specifications
Attribute name | Attribute value |
---|
Maximum internal memory | 1000 GB |
On-board graphics card | N |
Supported instruction sets | AVX-512 |
System bus rate | 8 GT/s |
Memory clock speeds supported by processor | 2666 MHz |
Tcase | 68 °C |
Processor base frequency | 3.5 GHz |
Intel® vPro™ Platform Eligibility | Y |
Discrete graphics card | N |
Cooler included | N |
Harmonized System (HS) code | 8542310001 |
Box | N |
Market segment | Server |
Status | Launched |
Export Control Classification Number (ECCN) | 5A992C |
Supported memory types | DDR4-SDRAM |
Launch date | Q2'19 |
Bus speed | 8 GT/s |
PCI Express CEM revision | 3.0 |
Intel® Transactional Synchronization Extensions | Y |
Intel® Boot Guard | Y |
Intel® Turbo Boost Max Technology 3.0 frequency | 4.2 GHz |
Intel Turbo Boost Max Technology 3.0 | Y |
Intel® Speed Shift Technology | Y |
AVX-512 Fused Multiply-Add (FMA) units | 2 |
Intel® Volume Management Device (VMD) | Y |
Intel® Run Sure Technology | Y |
Mode-based Execute Control (MBE) | Y |
Memory speed (max) | 2666 MHz |
Intel® Optane™ DC Persistent Memory technology | N |
Intel® Deep Learning Boost (Intel® DL Boost) | Y |
Intel® Resource Director Technology (Intel® RDT) | N |
Intel® Optane™ DC Persistent Memory Supported | N |
Intel Speed Select Technology (SST) | N |
Discrete graphics card model | Not available |
ECC | Y |
Memory channels | Hexa-channel |
Product type | Processor |
Component for | Server/workstation |
Processor ARK ID | 193739 |
Processor family | Intel Xeon W |
Processor model | W-3223 |
Processor boost frequency | 4 GHz |
Processor threads | 16 |
Processor cache | 16.5 MB |
PCI Express slots version | 3.0 |
Processor codename | Cascade Lake |
Processor lithography | 14 nm |
Processor package size | 76mm x 56.5mm mm |
Processor socket | FCLGA3647 |
Scalability | 1S |
Thermal Design Power (TDP) | 160 W |
On-board graphics card model | Not available |
Maximum internal memory supported by processor | 1024 GB |
Processor manufacturer | Intel |
Processor cores | 8 |
Enhanced Intel SpeedStep Technology | Y |
Intel 64 | Y |
Intel TSX-NI | Y |
Intel® AES New Instructions (Intel® AES-NI) | Y |
Intel® Turbo Boost Technology | 2.0 |
Maximum number of PCI Express lanes | 64 |
Memory types supported by processor | DDR4-SDRAM |
Embedded options available | N |
Execute Disable Bit | Y |
Intel Trusted Execution Technology | Y |
Intel Virtualization Technology (VT-x) | Y |
Intel VT-x with Extended Page Tables (EPT) | Y |